Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 921: 171012, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38369157

RESUMO

The impacts of contaminants on wildlife are dose dependent, and thus being able to track or predict exposure following contamination events is important for monitoring ecosystem health. However, the ability to track exposure in free-ranging wildlife is often severely limited. Consequently, researchers have predominantly relied on simple methods for estimating contaminant exposures in wildlife with little regard for spatial contaminant heterogeneity or an animal's use of diverse habitats. We evaluated the influence sampling scale (i.e., how finely contaminant distribution and organism's spatial use of the landscape is mapped) has on (1) realism and (2) conservativeness of exposure estimates. To do this, we monitored the actual exposure of wild boar (Sus scrofa) in Fukushima, Japan to radioactive contamination using GPS-coupled contaminant monitors placed on individual animals. We compared empirical exposures to estimates generated by combining varying amounts of information about an individual boar's location and/or movement, with the distribution of contamination on the landscape. We found that the most realistic exposure estimates were produced when finer-scale contaminant distribution surveys (e.g., airborne surveys) were combined with more accurate estimates of an individual's space use (e.g., home ranges or core areas). Importantly, estimates of exposure based on single point surveys at a trap site (a simple method commonly used in the literature), did not correlate with actual exposure rates, suggesting dose-effects studies using this method may result in spurious conclusions. These results suggest that researchers seeking realistic estimates of exposure, such as in dose-effect studies, should ensure they have adequately accounted for fine-scale contaminant distribution patterns and areas of higher use by study organisms. However, conservative estimates of exposure (i.e., intentionally over-predicting exposure as is done in initial tiers of ecological risk analyses) were not as scale sensitive and could be achieved with a single known location and coarse contaminant distribution maps.


Assuntos
Animais Selvagens , Radioatividade , Animais , Suínos , Ecossistema , Medição de Risco , Japão , Sus scrofa
2.
J Environ Radioact ; 270: 107269, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37579697

RESUMO

Unique data is reported on the transfer of 129I iodine from freshwaters to fish as well as the internal distribution within fish from the Fukushima and Chernobyl exclusion zones (ChEZ). Samples of water, sediments and fish were collected in the contaminated ponds Inkyozaka and Suzuuchi, and in the less contaminated Abukuma river in Fukushima, as well as in the contaminated Glubokoye lake and in the less contaminated Starukha lake in ChEZ. In water, 129I was mainly present as low molecular mass (LMM) and negatively charged species, while a minor fraction was associated with colloidal fraction, most probably organic material in water. The sediment-water 129I apparent distribution coefficients, Kd, ranged from 225 to 329 L/kg, equal that of stable iodine, but did not correlate with 129I/127I ratio or 129I/137Cs ratio as the environmental distribution of radioactive iodine was different from that of stable iodine and radioactive cesium. Concentration ratios (CR) of 129I in muscle of freshwater fish ranged from 85 to 544 across waterbodies with limited water exchange, similar in Fukushima and Chernobyl, but varied with respect to fish species. Thus, this is the first results on the transfer of 129I to freshwater fish, showing that the CR for freshwater fish is higher than CR reported for marine fish. Concentrations of 129I in fish muscle were, however, lower than in the intestinal content, indicating the influence of more contaminated dietary ingredients probably of terrestrial origin based due to δ13C signal on as well as of biodilution. The present results highlighted also that the radiation dose in fish was highly inhomogeneously distributed. Based on the present 129I/127I atomic ratio of 10-5 in the most contaminated fish in the ponds in Fukushima and Glubokoye lake in Chernobyl, however, a radiation dose of 10 µSv/y would not pose any harm to the fish population.


Assuntos
Acidente Nuclear de Chernobyl , Acidente Nuclear de Fukushima , Monitoramento de Radiação , Neoplasias da Glândula Tireoide , Poluentes Radioativos da Água , Animais , Radioisótopos do Iodo , Poluentes Radioativos da Água/análise , Radioisótopos de Césio/análise , Peixes , Rios , Lagos , Água , Japão
3.
Sci Rep ; 12(1): 8903, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35618781

RESUMO

The 2011 nuclear accident in Fukushima, Japan caused the evacuation of > 100,000 people and prompted studies on environmental impacts of radiological contamination. However, few researchers have explored how the human evacuation has affected ecosystem processes. Despite contamination, one common scavenger (wild boar, Sus scrofa) is 2-3× more abundant inside the Fukushima Exclusion Zone (FEZ). Shifts in abundance of some scavenger species can have cascading effects on ecosystems, so our objective was to investigate impacts of the evacuation and the resulting increase in wild boar on vertebrate scavenger communities. We deployed cameras at 300 carcasses in the FEZ and a nearby inhabited area, and quantified carcass fate, scavenger species, and detection/persistence times. We also tested effects of carcass size and habitat on scavenger community composition and efficiency by balancing trials across two carcass sizes and habitats in each zone. Overall scavenger richness and carcass removal rates (73%) were similar in the FEZ and inhabited area, but species-specific carcass removal rates and occurrence differed between zones. Wild boar removed substantially more carcasses inside the FEZ, with implications for nutrient and contaminant distribution. Our results suggest carcass size affects scavenging dynamics more than human activity or habitat, and abundance changes of common scavengers can influence carrion resource allocation.


Assuntos
Ecossistema , Acidente Nuclear de Fukushima , Animais , Meio Ambiente , Comportamento Alimentar , Peixes , Humanos
4.
Environ Pollut ; 306: 119359, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35487469

RESUMO

Genetic effects and radioactive contamination of large mammals, including wild boar (Sus scrofa), have been studied in Japan because of dispersal of radionuclides from the Fukushima Dai-ichi Nuclear Power Plant in 2011. Such studies have generally demonstrated a declining trend in measured radiocesium body burdens in wildlife. Estimating radiation exposure to wildlife is important to understand possible long-term impacts. Here, radiation exposure was evaluated in 307 wild boar inhabiting radioactively contaminated areas (50-8000 kBq m-2) in Fukushima Prefecture from 2016 to 2019, and genetic markers were examined to assess possible germline mutations caused by chronic radiation exposures to several generations of wild boar. Internal Cs activity concentrations in boar remained high in areas near the power plant with the highest concentration of 54 kBq kg-1 measured in 2019. Total dose rates to wild boar ranged from 0.02 to 36 µGy h-1, which was primarily attributed to external radiation exposure, and dose rates to the maximally exposed animals were above the generic no-effects benchmark of 10 µGy h-1. Using the estimated age of each animal, lifetime radiation doses ranged from <0.1 mGy to 700 mGy. Despite chronic exposures, the genetic analyses showed no significant accumulation of mutation events. Because wild boar is an occasional human dietary item in Japan, effective dose to humans from ingesting contaminated wild boar meat was calculated. Hypothetical consumption of contaminated wild boar meat from radioactively contaminated areas in Fukushima, at the per capita pork consumption rate (12.9 kg y-1), would result in an average effective annual dose of 0.9 mSv y-1, which is below the annual ingestion limit of 1 mSv y-1. Additionally, a consumption rate of about 1.4 kg y-1 of the most contaminated meat in this study would not exceed annual ingestion limits.


Assuntos
Acidente Nuclear de Fukushima , Monitoramento de Radiação , Animais , Animais Selvagens , Radioisótopos de Césio/análise , Mutação em Linhagem Germinativa , Humanos , Japão , Carne/análise , Doses de Radiação , Sus scrofa/genética , Suínos
5.
Proc Biol Sci ; 288(1953): 20210874, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34187197

RESUMO

Natural and anthropogenic disasters have the capability to cause sudden extrinsic environmental changes and long-lasting perturbations including invasive species, species expansion and influence evolution as selective pressures force adaption. Such disasters occurred on 11 March 2011, in Fukushima, Japan, when an earthquake, tsunami and meltdown of a nuclear power plant all drastically reformed anthropogenic land use. Using genetic data, we demonstrate how wild boar (Sus scrofa leucomystax) have persevered against these environmental changes, including an invasion of escaped domestic pigs (Sus scrofa domesticus). Concurrently, we show evidence of successful hybridization between pigs and native wild boar in this area; however in future offspring, the pig legacy has been diluted through time. We speculate that the range expansion dynamics inhibit long-term introgression and introgressed alleles will continue to decrease at each generation while only maternally inherited organelles will persist. Using the gene flow data among wild boar, we assume that offspring from hybrid lineages will continue dispersal north at low frequencies as climates warm. We conclude that future risks for wild boar in this area include intraspecies competition, revitalization of human-related disruptions and disease outbreaks.


Assuntos
Desastres , Acidente Nuclear de Fukushima , Animais , Hibridização Genética , Japão , Sus scrofa/genética , Suínos
6.
Environ Int ; 155: 106675, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34120002

RESUMO

The health effects associated with chronic low-dose, low-dose rate (LD-LDR) exposures to environmental radiation are uncertain. All dose-effect studies conducted outside controlled laboratory conditions are challenged by inherent complexities of ecological systems and difficulties quantifying dose to free-ranging organisms in natural environments. Consequently, the effects of chronic LD-LDR radiation exposures on wildlife health remain poorly understood and much debated. Here, samples from wild boar (Sus scrofa leucomystax) and rat snakes (Elaphe spp.) were collected between 2016 and 2018 across a gradient of radiation exposures in Fukushima, Japan. In vivo biomarkers of DNA damage and stress were evaluated as a function of multiple measurements of radiation dose. Specifically, we assessed frequencies of dicentric chromosomes (Telomere-Centromere Fluorescence in situ Hybridization: TC-FISH), telomere length (Telo-FISH, qPCR), and cortisol hormone levels (Enzyme Immunoassay: EIA) in wild boar, and telomere length (qPCR) in snakes. These biological parameters were then correlated to robust calculations of radiation dose rate at the time of capture and plausible upper bound lifetime dose, both of which incorporated internal and external dose. No significant relationships were observed between dicentric chromosome frequencies or telomere length and dose rate at capture or lifetime dose (p value range: 0.20-0.97). Radiation exposure significantly associated only with cortisol, where lower concentrations were associated with higher dose rates (r2 = 0.58; p < 0.0001), a relationship that was likely due to other (unmeasured) factors. Our results suggest that wild boar and snakes chronically exposed to LD-LDR radiation sufficient to prohibit human occupancy were not experiencing significant adverse health effects as assessed by biomarkers of DNA damage and stress.


Assuntos
Acidente Nuclear de Fukushima , Monitoramento de Radiação , Animais , Animais Selvagens , Radioisótopos de Césio/análise , Dano ao DNA , Humanos , Hibridização in Situ Fluorescente , Japão , Centrais Nucleares
7.
Sci Total Environ ; 754: 141890, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32916482

RESUMO

Plutonium (Pu) has been released in Japan by two very different types of nuclear events - the 2011 Fukushima accident and the 1945 detonation of a Pu-core weapon at Nagasaki. Here we report on the use of Accelerator Mass Spectrometry (AMS) methods to distinguish the FDNPP-accident and Nagasaki-detonation Pu from worldwide fallout in soils and biota. The FDNPP-Pu was distinct in local environmental samples through the use of highly sensitive 241Pu/239Pu atom ratios. In contrast, other typically-used Pu measures (240Pu/239Pu atom ratios, activity concentrations) did not distinguish the FDNPP Pu from background in most 2016 environmental samples. Results indicate the accident contributed new Pu of ~0.4%-2% in the 0-5 cm soils, ~0.3%-3% in earthworms, and ~1%-10% in wild boar near the FDNPP. The uptake of Pu in the boar appears to be relatively uninfluenced by the glassy particle forms of fallout near the FDNPP, whereas the 134,137Cs uptake appears to be highly influenced. Near Nagasaki, the lasting legacy of Pu is greater with high percentages of Pu sourced from the 1945 detonation (~93% soils, ~88% earthworm, ~96% boar). The Pu at Nagasaki contrasts with that from the FDNPP in having proportionately higher 239Pu and was distinguished by both 240Pu/239Pu and 241Pu/239Pu atom ratios. However, compared with the contamination near the Chernobyl accident site, the Pu amounts at all study sites in Japan are orders of magnitude lower. The dose rates from Pu to organisms in the FDNPP and Nagasaki areas, as well as to human consumers of wild boar meat, have been only slightly elevated above background. Our data demonstrate the greater sensitivity of 241Pu/239Pu atom ratios in tracing Pu from nuclear releases and suggest that the Nagasaki-detonation Pu will be distinguishable in the environment for much longer than the FDNPP-accident Pu.


Assuntos
Acidente Nuclear de Fukushima , Plutônio , Monitoramento de Radiação , Cinza Radioativa , Poluentes Radioativos da Água , Animais , Biota , Radioisótopos de Césio/análise , Japão , Plutônio/análise , Cinza Radioativa/análise , Suínos , Poluentes Radioativos da Água/análise
8.
J Environ Radioact ; 226: 106457, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33227677

RESUMO

Radiocesium was dispersed from the Fukushima Dai-ichi disaster in March 2011, causing comparatively high radioactive contamination in nearby environments. Radionuclide concentrations in wild rodents (Apodemus argenteus, and Apodemus speciosus) within these areas were monitored from 2012 to 2016. However, whole-organism to soil transfer parameters (i.e., concentration ratio, CRwo-soil) for wild rodents at Fukushima were not determined and hence were lacking from the international transfer databases. We augmented the 2012-2016 data by collecting soil activity concentrations (Bq kg-1, dry mass) from five rodent sampling sites in Fukushima Prefecture, and developed corresponding CRwo-soil values for radiocesium (134Cs and 137Cs) based on rodent radioactivity concentrations (Bq kg-1, fresh mass). The CRwo-soil were added to the Wildlife Transfer Database (WTD; http://www.wildlifetransferdatabase.org/), supporting the development of the International Commission on Radiological Protection's (ICRP) environmental protection framework, and increasing the WTD from 84 to 477 entries for cesium and Muridae ('Reference Rat'). Significant variation occurred in CRwo-soil values between study sites within Fukushima Prefecture. The geometric mean CRwo-soil, in this paper, was higher than that reported for Muridae species for Chernobyl. Radiocaesium absorbed dose rates were also estimated for wild rodents inhabiting the five Fukushima study sites and ranged from 1.3 to 33 µGy h-1. Absorbed dose rates decreased by a factor of two from 2012 to 2016. Dose rates in highly contaminated areas were within the ICRP derived consideration reference level for Reference Rat (0.1-1 mGy d-1), suggesting the possible occurrence of deleterious effects and need for radiological effect studies in the Fukushima area.


Assuntos
Acidente Nuclear de Fukushima , Monitoramento de Radiação , Poluentes Radioativos do Solo/análise , Poluentes Radioativos da Água/análise , Animais , Radioisótopos de Césio/análise , Japão , Doses de Radiação , Ratos
9.
Sci Total Environ ; 740: 140031, 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-32559536

RESUMO

In the Fall of 2016 a workshop was held which brought together over 50 scientists from the ecological and radiological fields to discuss feasibility and challenges of reintegrating ecosystem science into radioecology. There is a growing desire to incorporate attributes of ecosystem science into radiological risk assessment and radioecological research more generally, fueled by recent advances in quantification of emergent ecosystem attributes and the desire to accurately reflect impacts of radiological stressors upon ecosystem function. This paper is a synthesis of the discussions and consensus of the workshop participant's responses to three primary questions, which were: 1) How can ecosystem science support radiological risk assessment? 2) What ecosystem level endpoints potentially could be used for radiological risk assessment? and 3) What inference strategies and associated methods would be most appropriate to assess the effects of radionuclides on ecosystem structure and function? The consensus of the participants was that ecosystem science can and should support radiological risk assessment through the incorporation of quantitative metrics that reflect ecosystem functions which are sensitive to radiological contaminants. The participants also agreed that many such endpoints exit or are thought to exit and while many are used in ecological risk assessment currently, additional data need to be collected that link the causal mechanisms of radiological exposure to these endpoints. Finally, the participants agreed that radiological risk assessments must be designed and informed by rigorous statistical frameworks capable of revealing the causal inference tying radiological exposure to the endpoints selected for measurement.

10.
Sci Total Environ ; 734: 139389, 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32464388

RESUMO

One of the largest releases of radioactive contamination in history occurred at Japan's Fukushima Daiichi Nuclear Power Plant (FDNPP). Although the accident happened in 2011, questions still persist regarding its ecological impacts. For example, relatively little is known about radiocesium accumulation in snakes, despite their high trophic status, limited home range sizes, and close association with soil where many radionuclides accumulate. This study presents one of the most comprehensive radioecological studies of snakes published to date using a combination of whole-body radiocesium analyses, GPS transmitters, and optically stimulated luminescence (OSL) dosimeters. The objectives were to: 1) quantify whole-body radiocesium activity concentrations and internal dose rates among several common species of snakes within and around the Fukushima Exclusion Zone (FEZ), 2) determine effects of species, sex, and body size on radiocesium activity concentrations, 3) measure external dose rates using GPS-coupled dosimeters deployed on free-ranging snakes, 4) compare field-derived empirical dose rates to those generated by computer simulation software (i.e., the ERICA tool), and 5) determine if incorporating snake behavior into computer models improve simulated estimates of external dose. Whole-body radiocesium levels for snakes were highly variable among individuals (16 to 25,000 Bq/kg, FW), but were influenced more by levels of local contamination than species, sex, or size. Doses recorded by OSL dosimeters on snakes, as well as modeling in ERICA, suggest that individual movements and behavior have a substantial influence on dose rates to snakes. However, dose estimates produced with ERICA were comparable to dose received by tracked snakes. The average external plus internal dose rate for snakes captured in the FEZ was 3.6-3.9 µGy/h, with external dose contributing 80% to the total. Further research regarding reptile-specific benchmark dose rates would improve risk assessment for reptiles in radiologically contaminated areas.


Assuntos
Acidente Nuclear de Fukushima , Monitoramento de Radiação , Animais , Radioisótopos de Césio , Simulação por Computador , Japão , Serpentes , Poluentes Radioativos do Solo , Poluentes Radioativos da Água
11.
Sci Rep ; 10(1): 4055, 2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-32132563

RESUMO

This study evaluated cataracts in wild boar exposed to chronic low-dose radiation. We examined wild boar from within and outside the Fukushima Exclusion Zone for nuclear, cortical, and posterior subcapsular (PSC) cataracts in vivo and photographically. Plausible upper-bound, lifetime radiation dose for each boar was estimated from radioactivity levels in each animal's home range combined with tissue concentrations of 134+137Cesium. Fifteen exposed and twenty control boar were evaluated. There were no significant differences in overall prevalence or score for cortical or PSC cataracts between exposed and control animals. Nuclear (centrally located) cataracts were significantly more prevalent in exposed boar (p < 0.05) and had statistically higher median scores. Plausible upper-bound, lifetime radiation dose ranged from 1 to 1,600 mGy in exposed animals, with no correlation between dose and cortical or PSC score. While radiation dose and nuclear score were positively associated, the impact of age could not be completely separated from the relationship. Additionally, the clinical significance of even the highest scoring nuclear cataract was negligible. Based on the population sampled, wild boar in the Fukushima Exclusion Zone do not have a significantly higher prevalence or risk of cortical or PSC cataracts compared to control animals.


Assuntos
Catarata/epidemiologia , Acidente Nuclear de Fukushima , Lesões por Radiação/epidemiologia , Sus scrofa , Doenças dos Suínos/epidemiologia , Animais , Catarata/patologia , Radioisótopos de Césio/efeitos adversos , Japão/epidemiologia , Prevalência , Doses de Radiação , Lesões por Radiação/patologia , Suínos , Doenças dos Suínos/patologia
12.
J Environ Radioact ; 211: 106080, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31677432

RESUMO

During the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident in 2011 significant amounts of radiocaesium were released into the atmosphere from the reactor units 1, 2 and 3. This caused a non-uniform deposition, in composition and direction, of 134Cs and 137Cs in the near field (<30 km) from the reactors. In this work, we elucidate the influence of speciation, including radioactive particles, on mobility and potential bioavailability of radiocaesium in soils and sediments from sites located in different directions and distances from the FDNPP. Samples collected in September 2016 were characterized and subjected to sequential chemical extractions and simulated gastrointestinal fluid leaching, and the 137Cs and 134Cs activities were determined in bulk, grain-size and extracted fractions. The results show that radiocaesium was mainly irreversibly bound and in an inert form. Combined, the two forms contained >90% of the activity present in soils and ~84% in sediments. Digital autoradiography revealed that the inert fraction was predominantly associated with heterogeneities, an indication of radioactive particles. The frequency of heterogeneities was correlated with 137Cs activity concentrations, and both were in agreement with the ambient equivalent air doses measured in situ during sampling. Moreover, in situ gamma spectrometry measurements were used in the InSiCal software tool to derive 134Cs and 137Cs surface contamination. Soil activity concentrations and contamination density estimations, decay-corrected to the day of the FDNPP accident, resulted in 134Cs/137Cs ratios that match the reported release and deposition plumes from the reactor units. Overall, these results demonstrate the persistence of the particle contamination in the Fukushima near field and highlight the importance of including radioactive particles in environmental impact assessments.


Assuntos
Acidente Nuclear de Fukushima , Solo , Disponibilidade Biológica , Radioisótopos de Césio , Japão , Lagoas , Monitoramento de Radiação , Poluentes Radioativos do Solo
13.
14.
Environ Int ; 133(Pt A): 105152, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31518927

RESUMO

Measurements of external contaminant exposures on individual wildlife are rare because of difficulties in using contaminant monitors on free-ranging animals. Most wildlife contaminant exposure data are therefore simulated with computer models. Rarely are empirical exposure data available to verify model simulations, or to test fundamental assumptions inherent in exposure assessments. We used GPS-coupled contaminant monitors to quantify external exposures to individual wolves (Canis lupus) living within the Belarus portion of Chernobyl's 30-km exclusion zone. The study provided data on animal location and contaminant exposure every 35 min for 6 months, resulting in ~6600 individual locations and 137Cs external exposure readings per wolf, representing the most robust external exposure data published to date on free ranging animals. The data provided information on variation in external exposure for each animal over time, as well as variation in external exposure among the eight wolves across the landscape of Chernobyl. The exposure data were then used to test a fundamental assumption in screening-level risk assessments, espoused in guidance documents of the U.S. Environmental Protection Agency and U.S. Department of Energy, - Mean contaminant concentrations conservatively estimate individual external exposures. We tested this assumption by comparing our empirical data to a series of simulations using the ERICA modeling tool. We found that modeled simulations of mean external exposure (10.5 mGy y-1), based on various measures of central tendency, under-predicted mean exposures measured on five of the eight wolves wearing GPS-contaminant monitors (i.e., 12.3, 26.3, 28.0, 28.8 and 35.7 mGy y-1). If under-prediction of exposure occurs for some animals, then arguably the use of averaged contaminant concentrations to predict external exposure is not as conservative as proposed by current risk assessment guidance. Thus, a risk assessor's interpretation of simulated exposures in a screening-level risk analysis might be misguided if contaminant concentrations are based on measures of central tendency. We offer three suggestions for risk assessors to consider in order to reduce the probability of underestimating exposure in a screening-level risk assessment.


Assuntos
Acidente Nuclear de Chernobyl , Exposição à Radiação/análise , Monitoramento de Radiação/métodos , Cinza Radioativa , Lobos , Animais , Radioisótopos de Césio , Simulação por Computador , Modelos Biológicos , Poluentes Radioativos/metabolismo , Ucrânia
15.
Sci Rep ; 9(1): 11537, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31395920

RESUMO

The 2011 Tohoku earthquake drastically changed human activities in some regions of Fukushima Prefecture, Japan. The subsequent tsunami damage and radioactive pollution from the Fukushima Daiichi nuclear power plant resulted in the evacuation of humans, and abandonment of agricultural lands, allowing population expansion of wildlife into areas formally inhabited by domesticated livestock. Unintentional escape of domesticated pigs into wildlife inhabited environments also occurred. In this study, we tested the possibility of introgression between wild boar and domesticated pigs in Fukushima and neighboring prefectures. We analyzed mitochondrial DNA sequences of 338 wild boar collected from populations in the Tohoku region between 2006 and 2018. Although most boar exhibited Asian boar mitochondrial haplotypes, 18 boar, phenotypically identified as wild boar, had a European domesticated pig haplotype. Frequencies of this haplotype have remained stable since first detection in 2015. This result infers ongoing genetic pollution in wild boar populations from released domesticated pigs. In 2018, this haplotype was detected outside of evacuated areas, suggesting migration and successful adaptation. The natural and anthropocentric disasters at Fukushima gave us the rare opportunity to study introgression processes of domestic genes into populations of wild boar. The present findings suggest a need for additional genetic monitoring to document the dispersal of domestic genes within wild boar stock.


Assuntos
Animais Domésticos/genética , Fluxo Gênico/genética , Sus scrofa/genética , Suínos/genética , Animais , Desastres , Terremotos , Acidente Nuclear de Fukushima , Haplótipos/genética , Humanos , Hibridização Genética/genética , Japão/epidemiologia , Reprodução/genética , Sus scrofa/crescimento & desenvolvimento , Tsunamis
17.
J Environ Radioact ; 189: 282-296, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29653692

RESUMO

A model of cesium (Cs) dynamics among the principal biotic and abiotic components of an 11.4-ha impoundment is described. The model is derived from analyses of field measurements of Cs-133 concentrations in pond components for 500 days following the addition of 4 kg of stable Cs-133 to the system. This study differs from similar experiments in which radionuclides, or their stable analogs have been added to small ponds in that the biomasses of key pond components were also obtained. The Cs-133 concentrations and biomasses were used to compute the dynamics of Cs-133 inventories and fluxes among the pond components. The model permits interesting comparisons of Cs-133 transport and fate over time among the pond's abiotic components, primary producers, and two-orders of consumers. The importance of the submerged macrophyte and periphyton community in controlling the transport and fate of the added Cs-133 is quantified. Macrophytes intercepted much of the Cs-133 and slowed its ultimate sequestration by the sediments. The macrophytes' rapid absorption and slow release of Cs-133 prolonged the availability of the element to other pond biota. These data are being used within a subsequent paper to further develop the model into one in which the Cs-133 kinetics are described by transfer coefficients so that effects of changing environmental variables and remediation options can be explored.


Assuntos
Césio/análise , Monitoramento de Radiação , Poluentes Radioativos da Água/análise , Biomassa , Cadeia Alimentar , Lagoas
18.
J Environ Radioact ; 186: 34-44, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29029765

RESUMO

Dynamics of the Fukushima-derived radiocesium and distribution of the natural stable isotope 133Cs in Japanese cedar (Cryptomeria japonica D. Don) forest ecosystems were studied during 2014-2016. For the experimental site in Yamakiya, Fukushima Prefecture, we present the redistribution of radiocesium among ecosystem compartments during the entire observation period, while the results obtained at another two experimental site were used to demonstrate similarity of the main trends in the Japanese forest ecosystems. Our observations at the Yamakiya site revealed significant redistribution of radiocesium between the ecosystem compartments during 2014-2016. During this same period radionuclide inventories in the aboveground tree biomass were relatively stable, however, radiocesium in forest litter decreased from 20 ± 11% of the total deposition in 2014 to 4.6 ± 2.7% in 2016. Radiocesium in the soil profile accumulated in the 5-cm topsoil layers. In 2016, more than 80% of the total radionuclide deposition in the ecosystem resided in the 5-cm topsoil layer. The radiocesium distribution between the aboveground biomass compartments at Yamakiya during 2014-2016 was gradually approaching a quasi-equilibrium distribution with stable cesium. Strong correlations of radioactive and stable cesium isotope concentrations in all compartments of the ecosystem have not been reached yet. However, in some compartments the correlation is already strong. An increase of radiocesium concentrations in young foliage in 2016, compared to 2015, and an increase in 2015-2016 of the 137Cs/133Cs concentration ratio in the biomass compartments with strong correlations indicate an increase in root uptake of radiocesium from the soil profile. Mass balance of the radionuclide inventories, and accounting for radiocesium fluxes in litterfall, throughfall and stemflow, enabled a rough estimate of the annual radiocesium root uptake flux as 2 ± 1% of the total inventory in the ecosystem.


Assuntos
Isótopos de Césio/análise , Radioisótopos de Césio/análise , Florestas , Acidente Nuclear de Fukushima , Monitoramento de Radiação , Poluentes Radioativos do Solo/análise , Cryptomeria , Japão , Radioatividade
19.
J Environ Radioact ; 175-176: 105-114, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28505478

RESUMO

Exposure to radiation is a potential hazard to humans and the environment. The Fukushima accident reminded the world of the importance of a reliable risk management system that incorporates the dose received from radiation exposures. The dose to humans from exposure to radiation can be quantified using a well-defined system; its environmental equivalent, however, is still in a developmental state. Additionally, the results of several papers published over the last decade have been criticized because of poor dosimetry. Therefore, a workshop on environmental dosimetry was organized by the STAR (Strategy for Allied Radioecology) Network of Excellence to review the state of the art in environmental dosimetry and prioritize areas of methodological and guidance development. Herein, we report the key findings from that international workshop, summarise parameters that affect the dose animals and plants receive when exposed to radiation, and identify further research needs. Current dosimetry practices for determining environmental protection are based on simple screening dose assessments using knowledge of fundamental radiation physics, source-target geometry relationships, the influence of organism shape and size, and knowledge of how radionuclide distributions in the body and in the soil profile alter dose. In screening model calculations that estimate whole-body dose to biota the shapes of organisms are simply represented as ellipsoids, while recently developed complex voxel phantom models allow organ-specific dose estimates. We identified several research and guidance development priorities for dosimetry. For external exposures, the uncertainty in dose estimates due to spatially heterogeneous distributions of radionuclide contamination is currently being evaluated. Guidance is needed on the level of dosimetry that is required when screening benchmarks are exceeded and how to report exposure in dose-effect studies, including quantification of uncertainties. Further research is needed to establish whether and how dosimetry should account for differences in tissue physiology, organism life stages, seasonal variability (in ecology, physiology and radiation field), species life span, and the proportion of a population that is actually exposed. We contend that, although major advances have recently been made in environmental radiation protection, substantive improvements are required to reduce uncertainties and increase the reliability of environmental dosimetry.


Assuntos
Exposição à Radiação/estatística & dados numéricos , Monitoramento de Radiação/métodos , Animais , Humanos , Doses de Radiação , Proteção Radiológica , Radiometria , Reprodutibilidade dos Testes
20.
PLoS One ; 10(4): e0125327, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25927361

RESUMO

Despite their potential vulnerability to contaminants from exposure at multiple life stages, amphibians are one of the least studied groups of vertebrates in ecotoxicology, and research on radiation effects in amphibians is scarce. We used multiple endpoints to assess the radiosensitivity of the southern toad (Anaxyrus [Bufo] terrestris) during its pre-terrestrial stages of development -embryonic, larval, and metamorphic. Toads were exposed, from several hours after oviposition through metamorphosis (up to 77 days later), to four low dose rates of 137Cs at 0.13, 2.4, 21, and 222 mGy d-1, resulting in total doses up to 15.8 Gy. Radiation treatments did not affect hatching success of embryos, larval survival, or the length of the larval period. The individual family variation in hatching success of embryos was larger than the radiation response. In contrast, newly metamorphosed individuals from the higher dose-rate treatments had higher mass and mass/length body indices, a measure which may relate to higher post-metamorphic survival. The increased mass and index at higher dose rates may indicate that the chronic, low dose rate radiation exposures triggered secondary responses. Additionally, the increases in growth were linked to a decrease in DNA damage (as measured by the Comet Assay) in red blood cells at a dose rate of 21 mGy d-1 and a total dose of 1.1 Gy. In conclusion, the complex effects of low dose rates of ionizing radiation may trigger growth and cellular repair mechanisms in amphibian larvae.


Assuntos
Bufonidae/crescimento & desenvolvimento , Estágios do Ciclo de Vida/efeitos da radiação , Doses de Radiação , Radiação Ionizante , Animais , Tamanho Corporal/efeitos da radiação , Dano ao DNA/efeitos da radiação , Feminino , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...